“实时推荐系统”的版本间的差异

来自CloudWiki
跳转至: 导航搜索
第34行: 第34行:
 
*[[Flink点击流和销售额计算-自定义mysql sink ]]
 
*[[Flink点击流和销售额计算-自定义mysql sink ]]
 
*[[Flink点击流和销售额计算]]
 
*[[Flink点击流和销售额计算]]
 +
 +
*[[Flink实时数据处理]]
 +
 +
 +
 +
*[[丝路通:数据采集与缓存]]
 +
*[[丝路通:编写Flume配置文件]]
 +
*[[丝路通:Kafka——集群安裝部署(自带Zookeeper)]]
 +
*[[丝路通:Kafka数据缓存]]
 +
*[[丝路通:Flink安装配置]]
 +
*Flink开发环境:[[丝路通:IDEA配置]]
 +
*[[丝路通:Flink点击流和销售额计算-创建MYSQL存储表]]
 +
*[[丝路通:Flink点击流和销售额计算-自定义mysql sink ]]
 +
*[[丝路通:Flink点击流和销售额计算]]
  
 
*[[Flink实时数据处理]]
 
*[[Flink实时数据处理]]

2020年9月4日 (五) 06:40的版本

简介

电商平台网站 G 随着业务量越来越大,公司希望了解用户在浏览公司站点时的行为习惯和消费习惯,需要收集用户在站点的实时访问数据,并根据用户的购买偏好进行实时商品推荐。

用户数据来源分为两部分,即用户的网站日志和业务数据库。公司大数据工程师需要通过这两类数据来源中的数据分析用户的消费偏好。

实训环境

(1) 使用 CentOS 6.10 的 Linux 操作系统搭建的 3 个节点。

(2) 使用 1.8 的 JDK 。

(3) 使用 3.4.6 版本的 ZooKeeper 。

(4) 使用 2.6.4 版本的 Hadoop 。

(5) 使用 1.2.1 版本的 Hive 。

(6) 使用 1.9.0 版本的 Flume 。

(7) 使用 2.3.1 的 Kafka 。

(8) 使用 1.10.1 版本的 Flink 。

实训步骤