广播机制:通过扩展实现数组运算
来自CloudWiki
numpy数组的广播机制
- 注意numpy里数组之间的运算和线性代数中的矩阵运算是不一样的
- 同纬度和形状的数组之间就是同位置的元素两两匹配运算的结果
import numpy as np
a=np.array([[ 1., 2., 1.], [ 1., 2., 1.]])
b=np.array([[ 1., 2., 3.], [ 1., 2., 3.]])
print(a.shape,b.shape)
>>>(2, 3) (2, 3)
print(a+b)
>>>array([[ 2., 4., 4.],[ 2., 4., 4.]])
print(a*b)
>>>array([[ 1., 4., 3.],[ 1., 4., 3.]])
print(a-b)
>>>array([[ 0., 0., -2.],[ 0., 0., -2.]])
print(a**b)
>>>array([[ 1., 4., 1.],[ 1., 4., 1.]])
- 当两个数组其中一个的维度少于另外一个的时候
少的数组在某一个轴(或是多个轴)的方向缺失数据,缺数据的那个方向只能有1个元素(或是一行,一面)作为复制蓝本,然后依照轴的方向复制,复制数由多的那个数组的大小决定
- 注意:如果是列和行其中之一有空缺是可以通过复制来运算的。
但是蓝本不能有缺或者多,即行和列都不完整。
import numpy as np
|
[[6 7 6]
[6 7 6]] [[6. 7. 6.] [6. 7. 6.]]|} |