向量的表示及基变换

来自CloudWiki
112.38.217.43讨论2018年5月27日 (日) 14:08的版本 (创建页面,内容为“下面先来看一个高中就学过的向量运算:内积。两个维数相同的向量的内积被定义为: (a_1,a_2,\cdots,a_n)^\mathsf{T}\cdot (b_1,b_2,\cd…”)
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)
跳转至: 导航搜索

下面先来看一个高中就学过的向量运算:内积。两个维数相同的向量的内积被定义为:

(a_1,a_2,\cdots,a_n)^\mathsf{T}\cdot (b_1,b_2,\cdots,b_n)^\mathsf{T}=a_1b_1+a_2b_2+\cdots+a_nb_n

内积运算将两个向量映射为一个实数。其计算方式非常容易理解,但是其意义并不明显。下面我们分析内积的几何意义。假设A和B是两个n维向量,我们知道n维向量可以等价表示为n维空间中的一条从原点发射的有向线段,为了简单起见我们假设A和B均为二维向量,则A=(x_1,y_1),B=(x_2,y_2)。则在二维平面上A和B可以用两条发自原点的有向线段表示,见下图:


好,现在我们从A点向B所在直线引一条垂线。我们知道垂线与B的交点叫做A在B上的投影,再设A与B的夹角是a,则投影的矢量长度为|A|cos(a),其中|A|=\sqrt{x_1^2+y_1^2}是向量A的模,也就是A线段的标量长度。

注意这里我们专门区分了矢量长度和标量长度,标量长度总是大于等于0,值就是线段的长度;而矢量长度可能为负,其绝对值是线段长度,而符号取决于其方向与标准方向相同或相反。

到这里还是看不出内积和这东西有什么关系,不过如果我们将内积表示为另一种我们熟悉的形式:

A\cdot B=|A||B|cos(a)

现在事情似乎是有点眉目了:A与B的内积等于A到B的投影长度乘以B的模。再进一步,如果我们假设B的模为1,即让|B|=1,那么就变成了:

A\cdot B=|A|cos(a)

也就是说,设向量B的模为1,则A与B的内积值等于A向B所在直线投影的矢量长度!这就是内积的一种几何解释,也是我们得到的第一个重要结论。在后面的推导中,将反复使用这个结论。