CentOS7利用docker安装TensorFlow
参考文档:https://blog.csdn.net/qq_32782059/article/details/78432437
Docker安装
启动Docker
sudo systemctl start docker
自动运行docker
sudo systemctl enable docker
验证Docker安装是否正确
sudo servicde docker status, 查看服务的状态
sudo docker run hello-world 运行hello-world
显示有:Hello from Docker
Tensorflow的安装
docker run -it -p hostPort:containerPort TensorFlowCPUImage
如:docker run -it -p 8888:8888 tensorflow/tensorflow /bin/bash
设置运行时的密码:
docker run -it -p 8888:8888 -e "PASSWORD=11111111" tensorflow/tensorflow /bin/bash
docker run -it -p 8888:8888 gcr.io/tensorflow/tensorflow /bin/bash
如出现TLS handshake timeout,重启Linux就可以解决。我有安装过Python3.6.3,在此之前。
上述命令在找不到本地的image的时候,会从网络上下载一份新的image。
如果要安装gpu的版本,需要先安装nvidia-docker,然后运行如下命令:
nvidia-docker run -it -p 8888:8888 tensorflow/tensorflow:latest-gpu /bin/bash
Tensorflow的验证
执行完上述命令后会自动进入容器,
在容器中执行以下命令,验证安装是否成功:
root@52a616b3e654:/notebooks# python -V Python 2.7.12 root@52a616b3e654:/notebooks# python Python 2.7.12 (default, Dec 4 2017, 14:50:18) [GCC 5.4.0 20160609] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import tensorflow as tf >>> tf.__version__ '1.10.0' >>> import tensorflow as tf >>> hello = tf.constant('Hello,World') >>> sess = tf.Session() 2018-08-09 02:53:23.215721: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA >>> print sess.run(hello) Hello,World >>>
退出容器
exit
保存容器
查看所有的容器信息, 能获取容器的id
docker ps -a
然后执行如下命令[?],保存镜像:
docker commit -m="备注" 你的CONTAINER_ID 你的IMAGE