Numpy: 数据类型
来自CloudWiki
数据类型
numpy 支持的数据类型比 Python 内置的类型要多很多,基本上可以和 C 语言的数据类型对应上,其中部分类型对应为 Python 内置的类型。下表列举了常用 NumPy 基本类型。
名称 描述 bool_ 布尔型数据类型(True 或者 False) int_ 默认的整数类型(类似于 C 语言中的 long,int32 或 int64) intc 与 C 的 int 类型一样,一般是 int32 或 int 64 intp 用于索引的整数类型(类似于 C 的 ssize_t,一般情况下仍然是 int32 或 int64) int8 字节(-128 to 127) int16 整数(-32768 to 32767) int32 整数(-2147483648 to 2147483647) int64 整数(-9223372036854775808 to 9223372036854775807) uint8 无符号整数(0 to 255) uint16 无符号整数(0 to 65535) uint32 无符号整数(0 to 4294967295) uint64 无符号整数(0 to 18446744073709551615) float_ float64 类型的简写 float16 半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位 float32 单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位 float64 双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位 complex_ complex128 类型的简写,即 128 位复数 complex64 复数,表示双 32 位浮点数(实数部分和虚数部分) complex128 复数,表示双 64 位浮点数(实数部分和虚数部分)
numpy 的数值类型实际上是 dtype 对象的实例,并对应唯一的字符,包括 np.bool_,np.int32,np.float32,等等。
举例
>>> dt = np.dtype(np.int32) >>> print(dt) int32
>>> # int8, int16, int32, int64 四种数据类型可以使用字符串 'i1', 'i2','i4','i8' 代替 >>> dt = np.dtype('i4') >>> print(dt) int32
数据类型编码
每个内建类型都有一个唯一定义它的字符代码,如下: 字符 对应类型 b 布尔型 i (有符号) 整型 u 无符号整型 integer f 浮点型 c 复数浮点型 m timedelta(时间间隔) M datetime(日期时间) O (Python) 对象 S, a (byte-)字符串 U Unicode V 原始数据 (void)
举例
>>> dt = np.dtype('S20') >>> print(dt) |S20 >>> dt = np.dtype('f4') >>> print(dt) float32 >>>
结构化数据类型
下面实例展示结构化数据类型的使用,类型字段和对应的实际类型将被创建。
实例 4
# 首先创建结构化数据类型 import numpy as np dt = np.dtype([('age',np.int8)]) print(dt)
输出结果为:
[('age', 'i1')]
实例 5
# 将数据类型应用于 ndarray 对象 import numpy as np dt = np.dtype([('age',np.int8)]) a = np.array([(10,),(20,),(30,)], dtype = dt) print(a)
输出结果为:
[(10,) (20,) (30,)]
实例 6
# 类型字段名可以用于存取实际的 age 列 import numpy as np dt = np.dtype([('age',np.int8)]) a = np.array([(10,),(20,),(30,)], dtype = dt) print(a['age'])
输出结果为:
[10 20 30]
实例 7
下面的示例定义一个结构化数据类型 student,包含字符串字段 name,整数字段 age,及浮点字段 marks,并将这个 dtype 应用到 ndarray 对象。
import numpy as np student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')]) print(student)
输出结果为:
[('name', 'S20'), ('age', 'i1'), ('marks', 'f4')]
实例 8
import numpy as np student = np.dtype([('name','S20'), ('age', 'i1'), ('marks', 'f4')]) a = np.array([('abc', 21, 50),('xyz', 18, 75)], dtype = student) print(a)
输出结果为:
[('abc', 21, 50.0), ('xyz', 18, 75.0)]